```
AD-A042 734 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER
ON ORTHOGONAL POLYNOMIALS.(U)
JUN 77 P G NEVAI
    MRC-TSR-1760
                                    DAAG29-75-C-0024
                                    NL
```



```
\(\square\)
```



```
END
DAKE
filwe
\(9=77\)
```

```
MRC TECHNICAL SUMMARY REPORT \#1760
```

ON ORTHOGONAL POLYNOMIALS

Paul G. Nevai

Mathematics Research Center
University of Wisconsin-Madison 610 Walnut Street Madison, Wisconsin 53706

June 1977

COPY, u

Sponsored by
U. S. Army Research Office
P.O. Box 12211

Research Triangle Park
North Carolina 27709

Approved for public release
 Distribution unlimited

National Science Foundation Washington, D. C. 20550

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

ON ORTHOGONAL POLYNOMIALS
Paul G. Nevai

Technical Summary Report \#1760
June 1977
ABSTRACT

Abstract

Orthogonal polynomials satisfy a three term recurrence relation. The purpose of the paper is to give estimates for the orthogonal polynomials and the corresponding weight function provided that the coefficients in the recurrence formula behave in a prescribed manner.

AMS (MOS) Subject Classification - 42A52 Key Words - Orthogonal Polynomials Work Unit Number 6 - Spline Functions and Approximation Theory

EXPLANATION

Orthogonal polynomials provide a convenient means to expand functions into series in polynomials. When investigating these series one has to be able to estimate the size of the orthogonal polynomials. The present paper shows how to estimate orthogonal polynomials when the recurrence relation for these polynomials is given.

ON ORTHOGONAL POLYNOMIALS

Paul G. Nevai

$P_{-1}=0, P_{0}=Y_{0}$ and defining P_{n} for $n=1,2, \ldots$ by

$$
x_{n-1}(x)=\frac{\gamma_{n-1}}{\gamma_{n}} p_{n}(x)+\alpha_{n-1} p_{n-1}(x)+\frac{\gamma_{n-2}}{\gamma_{n-1}} p_{n-2}(x)
$$

we obtain a system of polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ which by a result of J. Favard (see e.g. [2]) is orthonormal with respect to some positive measure $d \alpha$ acting on the real line. Let

$$
c_{n}=\left|1-2 \frac{\gamma_{n-1}}{\gamma_{n}}\right|+2\left|\alpha_{n-1}\right|+\left|1-2 \frac{\gamma_{n-2}}{\gamma_{n-1}}\right|
$$

It has been shown in [3] that under the assumption
(1)

$$
\sum_{n=0}^{\infty} c_{n}<\infty
$$

the measure da can be written as

$$
d \alpha(x)=\alpha^{\prime}(x) d x+\{\{\text { jumps outside }(-1,1)\}
$$

where α^{\prime} is positive and continuous on $(-1,1)$ and α^{\prime} vanishes outside $[-1,1]$. At the present time it is not clear that assuming (1) how α^{\prime} behaves near -1 and 1 . In case of the Tschebyshev polynomials $1 \alpha_{n}=0$ for $n=0,1, \ldots, \gamma_{0}=\gamma_{1}=1$ and $\gamma_{n}=2^{n-1}$ for $n=2,3, \ldots) a^{\prime}$ is not continuous at -1 and 1 . For the Tschebyshev polynomials of second kind $\left(\alpha_{n}=0\right.$ and $\gamma_{n}=2^{n}$ for $\left.n=0,1, \ldots\right) \quad \alpha^{\prime}$ is not positive at -1 and 1. Since the works of G. Szegö (see e.g. [4]) it has become known that those measures da for which
(2)

$$
\int_{-\pi}^{\pi} \log \alpha^{\prime}(\cos \theta) d \theta>-\infty
$$

play a very important role in the theory of orthogonal polynomials. Therefore it is natural sponsored by
the United States Army under Contract No. DAAG29-75-C-0024 and the National Science Foundation under Grant No, MCS75-06687
to ask if (1) implies (2). It is easy to see that under the assumption supp (da) $=[-1,1]$ the inequality (2) follows from (1) ([3]). Otherwise the question is still open. It was proved in [3] that
(3)

$$
\sum_{n=0}^{\infty} n c_{n}<\infty
$$

implies

$$
\alpha^{\prime}(x) \geq \text { const } \sqrt{1-x^{2}}
$$

for $-1 \leq x \leq 1$. Hence (2) follows from (3). K. M. Case suggested in [1] that (2) holds whenever

$$
\lim _{n \rightarrow \infty} \sup ^{2} c_{n}<\infty
$$

The purpose of this note is to show that the weaker condition
(4)

$$
\sum_{n=0}^{m}(n+1) c_{n} \leq A \log (m+1) \quad(m=1,2, \ldots)
$$

not only implies (2) but also gives a pointwise estimate for α^{\prime}. We will see that assuming (4) $\log \alpha^{\prime}$ is very far from being nonintegrable. Our plan is the following. First, using an absolutely elementary method, we obtain estimate for $\left|p_{n}\right|$. This method is somewhat miraculous since we establish an inequality which improves itself when applied repeatedly. Having bound for $\left|p_{n}\right|$ the corresponding estimate for α follows from a result in [3].

THEOREM. Suppose that (4) holds with a suitable constant $A>0$. Then there exist two positive constants A_{1} and A_{2} depending only on A and $\inf _{n} \gamma_{n-1} / \gamma_{n}$ such that

$$
\begin{equation*}
\left|p_{n}(x)\right| \leq A_{1}\left(1-x^{2}\right)^{-A_{2}} \quad(-1 \leq x \leq 1) \tag{5}
\end{equation*}
$$

for $n=1,2, \ldots$ and
(6)

$$
\alpha^{\prime}(x) \geq A_{1}^{-1}\left(1-x^{2}\right)^{A_{2}} \quad(-1 \leq x \leq 1)
$$

Proof. Let $x \in[-1,1]$ and put $x=\cos \theta$ where $0 \leq \theta \leq \pi$. Define ϕ_{n} by

$$
\phi_{n}(\theta)=p_{n}(x)-e^{i \theta} p_{n-1}(x)
$$

Then

$$
\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)=p_{n}(x)-2 x p_{n-1}(x)+p_{n-2}(x)
$$

and by the recurrence formula
(7)

$$
\begin{aligned}
\phi_{n}(\theta) & -e^{-i \theta} \phi_{n-1}(\theta)= \\
& =\left[1-2 \frac{\gamma_{n-1}}{\gamma_{n}}\right] p_{n}(x)-2 \alpha_{n-1} p_{n-1}(x)+\left[1-2 \frac{\gamma_{n-2}}{\gamma_{n-1}}\right] p_{n-2}(x)
\end{aligned}
$$

Consequently

$$
\left|\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)\right| \leq c_{n} \sum_{k=n-2}^{n}\left|p_{k}(x)\right|
$$

Using again the recurrence formula we obtain
(8)

$$
\sum_{k=n-2}^{n}\left|p_{k}(x)\right| \leq k \sum_{k=M-1}^{M}\left|p_{k}(x)\right| \quad(M=n-1, n)
$$

where K depends only on $\sup _{n} \alpha_{n} \inf _{n} \gamma_{n-1} / \gamma_{n}$ and $\sup _{n} \gamma_{n-1} / \gamma_{n}$. Furthermore, from the definition of ϕ_{n} follows that
(9)

$$
\sqrt{1-x^{2}}\left|p_{n}(x)\right| \leq\left|\phi_{n}(\theta)\right| \text {. } \sqrt{1-x^{2}}\left|p_{n-1}(x)\right| \leq\left|\phi_{n}(\theta)\right| .
$$

Therefore

$$
\left|\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)\right| \leq 2 K_{c_{n}}\left(1-x^{2}\right)^{\frac{1}{2}} \max _{|x| \leq 1}\left|\phi_{n-1}(\theta)\right|
$$

Recall that $\phi_{n}-e^{-i \theta} \phi_{n-1}$ is a polynomial of degree n in x. Thus by a theorem of
S. Bernstein

$$
\max _{|x| \leq 1}\left|\phi_{n}(\theta)-e^{-i \theta} \phi_{n-1}(\theta)\right| \leq 2 K c_{n}(n+1) \max _{|x| \leq 1}\left|\phi_{n-1}(\theta)\right| .
$$

that is

$$
\max _{|x| \leq 1}\left|\phi_{n}(\theta)\right| \leq{ }_{|x| \leq 1}\left|\phi_{n-1}(\theta)\right|\left[1+2 K c_{n}(n+1)\right]
$$

Repeated application of this inequality shows that

$$
\max _{|x| \leq 1}\left|\phi_{n}(\theta)\right| \leq \gamma_{0} \exp \left\{2 k \sum_{j=1}^{n}(j+1) c_{j}\right\} .
$$

Hence by (4)
(10)

$$
\left|\phi_{\mathrm{n}}(\theta)\right| \leq \gamma_{0}(\mathrm{n}+1)^{2 \mathrm{KA}}
$$

for $-1 \leq x \leq 1$ and $n=0,1, \ldots$. Now we return to (7). Multiplying both sides of (7) by $e^{i n \theta}$ and summing for $n=0,1, \ldots, m$ we obtain

$$
\begin{aligned}
e^{i m \theta} \phi_{m}(\theta)= & \sum_{n=0}^{m}\left\{\left[1-2 \frac{Y_{n-1}}{\gamma_{n}}\right] p_{n}(x)-2 \alpha_{n-1} p_{n-1}(x)+\right. \\
& \left.+\left[1-2 \frac{Y_{n-2}}{\gamma_{n-1}}\right] p_{n-2}(x)\right\} .
\end{aligned}
$$

Therefore by (8) and (9)
(11)

$$
\left|\phi_{m}(\theta)\right| \leq 2 K\left(1-x^{2}\right)^{-\frac{1}{2}} \sum_{n=0}^{m} c_{n}\left|\phi_{n}(\theta)\right|
$$

Using inequality (10) we get

$$
\left|\phi_{m}(\theta)\right| \leq 2 K \gamma_{0}\left(1-x^{2}\right)^{-\frac{1}{2}} \sum_{n=0}^{m} c_{n}(n+1)^{2 K A} .
$$

If $2 \mathrm{KA}<1$ then by (4) and (9) the estimate (5) follows. Suppose that $2 \mathrm{KA}>1$. Then using (4) we obtain

$$
\begin{aligned}
\left|\phi_{m}(\theta)\right| & \leq 2 K \gamma_{0}\left(1-x^{2}\right)^{-\frac{1}{2}}(m+1)^{2 K A-1} \sum_{n=0}^{m} c_{n}(n+1) \leq \\
& \leq 2 K A \gamma_{0}(m+1)^{2 K A-1} \log (m+1)\left(1-x^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

which is much better than (10). Now plug this inequality into (11). If $2 \mathrm{KA}-1<1$ then (5) follows. Otherwise we get a new estimate which we again plug into (11). After finitely many similar steps we obtain

$$
\begin{aligned}
& \qquad\left|\phi_{m}(\theta)\right| \leq B_{1}\left(1-x^{2}\right)^{-B_{2}} \\
& \text { for }-1 \leq x \leq 1 \text { and } n=1,2, \ldots \text { which combined with (9) yields (5). The inequality (6) } \\
& \text { follows from (5) and Theorem } 7.5 \text { of [3]. } \\
& \text { Finally we note that the example of Jacobi polynomials shows that apart from the } \\
& \text { constants } A_{1} \text { and } A_{2} \text { our result cannot be improved. }
\end{aligned}
$$

REFERENCES

[1] Case, K. M. Orthogonal polynomials revisited, in "Theory and Application of Special Functions", ed. R. A. Askey, Academic Press, 1975, 289-304.
[2] Freud, G., "Orthogonal Polynomials", Pergamon Press, New York, 1971.
[3] Nevai, P. G. "Orthogonal Polynomials", Memoirs of the Amer. Math. Soc. (to appear).
[4] Szegö, G. "Orthogonal Polynomials", Amer. Math. Soc. , New York, 1967.

17. DISTRIBUTION STATEMENT (of the ebetract ontered in Block 20, if difforent from Report)
16. SUPPLEMENTARY NOTES
U.S. Army Research Office
P.O. Box 12211 National Science Foundation Research Triangle Park and Washington, D. C. 20550 North Carolina 27709
19. KEY WORDS (Continue on reverce aide if neceecary and Identlfy by block number)

Orthogonal polynomials
20. ABGTRACT (Continue on reverse alde If neceseary and Identlfy by block number)

Orthogonal polynomials satisfy a three term recurrence relation. The purpose of the paper is to give estimates for the orthogonal polynomials and the corresponding weight function provided that the coefficients in the recurrence formula behave in a prescribed manner.

